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Abstract

An optimal inspection policy will inspect either every item produced or
no item when (1) product characteristics are well modeled as independent
and identically distributed and (2) overall inspection cost is a sum of individ-
ually and identically determined costs for the items encountered. We show
that even when independent inspection errors are possible, these conditions
lead to optimality of either 0% or 100% inspection under several standard
inspection scenarios and, more generally, even among fully sequential inspec-
tion plans. We also give examples to demonstrate that both “other” cost
structures and “informative” inspections (that is, lack of independence) can
lead to optimal policies which are not of the all or none type.

KEY WORDS: Acceptance sampling; Imperfect inspection; Cost opti-
mality; Sequential decision making



1 Introduction

It is often said in product sampling inspection that all or none is optimal
(e.g., Deming, 1986, Chapter 15). That is, in order to minimize cost, one
should inspect (and, if defective, replace or rectify) either every item or
no item from the production stream — the optimum choice depending on
various costs involved and the expected fraction defective in the particular
situation. In the production of critical metal components for aircraft en-
gines it is generally agreed that 100% inspection is optimal because of the
high cost (probably loss of lives) incurred when a defective component fails
in service. However, the usual justification for all or none inspection does
not include the possibility that inspection results may be imperfect. Typi-
cal nondestructive evaluation techniques using, for example, eddy currents
or ultrasonics are associated with substantial measurement noise and this
application has partly motivated our work.

In this paper we describe conditions under which all or none optimality
holds and indicate some cases in which optimal policies need not be of the
all or none type. We also discuss the issue of imperfect inspection and its
effect on typical all or none criteria.

Optimality of all or none inspection has historically been discussed in
the context of “go no-go” acceptance sampling of incoming lots of parts
for subsequent assembly. See for example Mood (1943) and Barnard (1954)
or, more recently, Deming (1982, Chapter 13) and Vardeman (1986). In
Sections 2 through 4 we demonstrate that with appropriate assumptions
optimal inspection policies are of the all or none type regardless of whether
one is using fixed interval inspections, random inspections, the continuous
sampling plan of Dodge (1943), or traditional lot acceptance sampling. In
this way we broaden what has historically been a focus on all or none opti-
mality for traditional acceptance sampling.

In Section 5 we show that under the following two conditions either 0% or
100% inspection is the optimal policy among a wide class of fully sequential
inspection policies including those of Sections 2 through 4.

1. The physical characteristics of an item and the item’s corresponding
inspection results are well modeled with a joint probability distribution
that is identical for each item and independent from item to item.

2. Overall costs are a sum of individual costs associated with an item’s
condition and/or inspection results, assessed identically and separately
for each item of production.



We refer to a product stream and inspection procedure as stable if Condition
1is satisfied. The perspective of Sections 2 through 5 is frequentist. In most
of the paper we treat product quality and inspection results as if they were
binary quantities. However, in Section 5 we show that under Conditions 1
and 2 all or none inspection is optimal much more generally.

In order to determine whether it is 0% or 100% inspection that is optimal
under 1 and 2 one must use the common joint distribution of an item’s phys-
ical characteristics and corresponding inspection results. In particular, for
the binary case considered in Sections 2 through 4, one must use the proba-
bility p that an item is defective. If p is not known then the optimal policy
is not realizable. One way to handle this difficulty is to explicitly deal with
one’s ignorance about p by assigning it a prior probability distribution. In
this case Condition 1 is usually no longer satisfied and the optimal realizable
policy need no longer have the all or none character. This type of Bayesian
analysis is discussed in Sections 6 and 7. In Section 8 we briefly consider
how a cost structure which does not treat each item separately according to
Condition 2 can lead to other than all or none optimality. Section 9 gives
some concluding remarks.

2 Random and Fixed Interval Inspections of “Stable”
Product Streams

2.1 Perfect Inspection

The situation in which all or none optimality is probably most easily demon-
strated is the following: Units produced by a certain manufacturing line
are either good (coded X; = 0, ¢ denoting the serial number of an item)
or defective (X; = 1). Successive X;’s are modeled as statistically inde-
pendent (Condition 1) with constant defective probability p; i.e., X; ~ iid
Bernoulli(p). An inspection cost k1 > 0 is assessed for any item that is
inspected and an amount ks > ky is assessed for any defective item that is
not inspected. (In this case cost is as described in Condition 2.) Each item
is inspected with probability 7 and the choice about whether to inspect a
given item is independent of any previous choices and the outcomes of any
previous inspections. The goal is to choose 7 so as to minimize the (overall
total cost or equivalently the) average cost per unit

Tky 4 (1 — m)pky = pky + m(k1 — pk2).



It is clear that this is minimized by taking 7 = 0 (no inspection) if k1 —pky <
0 (i.e., p < k1/k2) and by 7 = 1 (inspect all) otherwise. Notice that in order
to implement mathematically optimal inspection in this case, one must know
the constant defective probability, p.

2.2 Imperfect Inspection

A refinement of the above is to admit that, realistically, inspection cannot
be performed perfectly, and thus allow misclassification probabilities

wg = probability of misclassifying a good item as defective, and
w1 = probability of misclassifying a defective item as good.

The good/defective states X; of the items are again modeled as iid Bernoulli(p)
random variables and inspection results are modeled as independent given
the actual states (good or defective) of the inspected units. Associated non-
negative costs are assessed as follows:

k1 = cost to inspect an item,
ko = cost when a defective item passes inspection or is not inspected,
ks = cost to attempt rectification of a good item deemed defective, and
k4 = cost to rectify a defective item.
The per unit cost is then
Tk + kawip + kzwo(1 — p) + ka(1 — wr)p] + (1 — m)pks
= pky + 7{(k1 + woks) — p[(1 — w1 )(k2 — kq) + woks]}.
This is minimized, over choice of 7, by @ = 0 (no inspection) if

k1 + woks
1 — wy)(ka — ka) + woks

p<pCE(

and by 7 = 1 (inspect all) otherwise. We should point out that although the
optimal 7 is discontinuous in p, it is clear from the expression for per unit
cost that if p is near p., the per unit cost changes very little as a function of
7 and hence all, none or anything in between are about equivalent in terms
of expected cost (though obviously they differ in inspection load.) Also,
the result shows that including the possibility of inspection errors does not



affect the all or none nature of the solution. It does, however, push one in
the direction of doing no inspection (i.e., where p. is mapped into (0,1), it
is an increasing function both wg and wy.)

Essentially the same analysis can be performed if, in the above situation,
the inspection scheme is a “fixed interval” inspection plan in which every
mth item is inspected. In this case the role of 7 is taken by 1/m.

3 CSP-1 Inspection Plans and “Stable” Product
Streams

Another common setup in which we can show that all or none inspection
is optimal is that of the so called type 1 continuous sampling plan (CSP-1)
introduced by Dodge (1943). Whetherill (1977) gives an overview of this
plan including some important references. He also shows for the case of
perfect inspection that all or none is optimal.

CSP-1 is an inspection plan conducted in cycles consisting of two phases:
100% inspection and fixed interval inspection. The plan begins in the 100%
inspection phase in which all units are inspected until some number ¢ (called
the clearing interval) of consecutive units are judged not defective. Then,
inspection switches to the sampling phase during which only every mth item
is inspected. The sampling phase continues until a defective item is found;
this completes a cycle and causes a return to the 100% inspection phase.

Under the probability model and cost structure of Section 2.2, it is possi-
ble to derive expressions for the mean cycle cost and the mean cycle length.
As shown in Appendix A, minimizing the ratio of these means with respect
to ¢ and m results in all or none optimality depending on whether the average
fraction defective p is larger or smaller than the critical value p..

4 Acceptance Sampling of Lots and iid Bernoulli
Models

In this Section we consider optimality of all or none inspection in the histori-
cal context of acceptance sampling of incoming lots of parts to be assembled
in a subsequent operation where lot disposal decisions are made based on
counts of good and defective inspection results. See, for example, Deming
(1986, Chapter 15). In this case a sample of n parts from a lot of N is
inspected and parts judged to be defective in the sample are rectified. If



more than some number ¢ in the sample are judged defective, the remaining
N — n parts are inspected and apparently defective parts are rectified. Oth-
erwise, if fewer than ¢ are judged defective, the entire lot is accepted with
no further inspection.

In this situation, the good/defective states of the N parts in a lot have
traditionally been modeled as iid Bernoulli(p) variates as in Section 2.2.
This is typically justified on one of two bases:

1. As appropriate where the lot can be thought of as derived from some
“stable” production process having p as before.

2. As a good approximation to a finite population simple random sam-
pling model (for p = the reallot fraction defective) in cases where n/N
is small.

Under the model and cost structure (kq, k2, k3, k4) of Section 2.2, the optimal
acceptance sampling policy is

o if p < pc, then inspect n = 0 and always accept the lot, and

e if p > p., then inspect n = N.

See Appendix B for details. That is, all or none is optimal and the critical
cost ratio is again the same as for the random inspection scenario of Section
2.2.

5 Unifying Comments on the Three Inspection
Scenarios

The random inspection plan and the fixed interval plan might be termed
non-sequential inspection plans since all of the units to be inspected can be
determined before any of the inspection results are known. On the other
hand, CSP-1 and the traditional acceptance sampling plan must be carried
out sequentially. Decisions must be made “on the run” regarding which
units are to be inspected.

The most general sequential sampling plan would allow for a decision on
how to proceed further after each inspection result becomes available. Under
the fixed p independence model for the good/defective states of units and our
description of inspection eflicacy in terms of wg and wy, it is fairly straight-
forward to use dynamic programming to show that the optimal general se-
quential inspection policy depending on the apparently good/apparently de-
fective inspection results where NV parts are involved, is to do no inspection



if p < pe and inspect everything otherwise. In Appendix C we show that
all or none optimality holds even in a more general context where product
characteristics and inspection measurements are possibly continuous vector
valued random variables and Conditions 1 and 2 are satisfied.
Qualitatively, the reason that all or none holds so universally under
Conditions 1 and 2 is that any information gained on any number of units
has no effect on one’s assessment of the likely characteristics of the remaining
units. Hence, allowing sequential decision making is of no extra value. ;From
this point of view it should be no surprise that costs in all of the scenarios
considered thus far are optimized by use of the same all or none rule.

6 More Complex Models

In this and the remaining sections we return to the case where product
characteristics and inspection results are treated (possibly after classification
based on continuous quantities) as binary quantities. Our statement in
Section 1 of the two conditions under which all or none inspection is optimal
suggests that it may be reasonable to inspect a fraction of the items if
doing so can improve one’s information about the condition of the remaining
items. This is true, and can be understood by considering the extreme
case of a manufacturer which ships perfect lots of parts yet occasionally
makes shipments of the wrong stock number (i.e., 100% defective lots). If
inspection is not too costly yet there is a cost associated with “defective”
parts being passed on to assembly, then it is obvious that an optimal plan
is to inspect one item from the lot to determine whether the lot is entirely
good or entirely defective and replace the whole lot if needed, or route it to
assembly otherwise.

More generally, one may wish to describe imprecise knowledge of p, or
a time varying p (successive values of which we denote as py,pa,...), by
means of a joint probability structure for py,ps,.... Doing so can lead to
many varied and interesting problems in sequential decision making. We
will here describe two very narrowly defined problems of this type for which
solutions are straightforward.

First we note that it is possible to apparently generalize any of the fixed
p situations described in Sections 2 through 4, by adding the possibility
that each unit produced has a propensity to be defective, p;, distributed
independently according to a probability density g(p) with mean pg. (The
states of the units are then modeled as independent given the defective



probabilities {p¢}.) Such a model might be contemplated, for example, if
before the manufacture of each part a machine were loaded with a cutting
tool drawn randomly from a bin of tools. However, this probability structure
for the states is really no different from that obtained when each item has
a fixed defective probability pg, which except for a slight notational change,
is the case we have already examined.

On the other hand, if we model all units as having a common but un-
known defective probability (p1 = p; = --- = p where p is described by a
probability distribution g(p)), then it is possible to improve one’s knowledge
of uninspected units by knowing the fraction of apparently defective items
found among those inspected. In these cases optimal inspection plans need
not be of the all or none type and globally optimal plans will generally be
of a fully sequential nature. In the next section we will discuss the problem
of finding optimum “single sampling” plans in this context.

A much more complex situation is met if p; is modeled as varying unit to
unit according to a serially dependent stochastic process, like for example a
Markov process. We know of no clean statement and solution to a nontrivial
inspection problem of this more general type.

7 Bayesian Acceptance Sampling

If p, the probability of being defective in the acceptance sampling setup
described in Section 4, is the same for each item and unknown but described
with a probability or density function g(p), the optimal initial inspection
sample size n, need not be 0 or N (unless ¢ puts all of its probability
to one side of the critical cost ratio, in which case either all or none is
optimal depending on where the probability is located). A “single sampling
with rectification” acceptance sampling rule is a particular kind of two-stage
decision rule. An initial sample is inspected, defective units are rectified,
and the remainder of the lot is inspected and rectified only if the initial
sample had more than some number ¢ of defective units. Thyregod (1974)
develops optimal acceptance sampling plans of this type in a general context
allowing the state of each part to be a measurement on a continuous scale
and individual item costs are charged correspondingly. Lorenzen (1985)
specializes Thyregod’s arguments to the Bernoulli situation.

For convenient densities g(p), it is possible, with the aid of computer
programs, to find values of n and ¢ which minimize the expected total cost
associated with inspection. Lorenzen’s (1985) program e.g., uses a Beta



density for g(p) and assumes perfect inspection. Appendix D shows that
the acceptance sampling problem incorporating possible inspection errors is
mathematically the same as the one discussed by Lorenzen, aside from a
rescaling of the prior distribution and a transformation of the cost param-
eters. However, we must point out that among all possible fully sequential
inspection policies, even the best of these two stage rules is not generally
globally optimal.

8 Other Overall Cost Structures

To understand the importance of Condition 2 to the all or none conclusions of
this paper, consider a scenario in which a single working component out of an
early shipment of several such components will later be needed to complete
a high-priority project (e.g., a space shuttle). Suppose that inspection of
the components can be done upon receipt at a moderate per item cost,
and should the lot fail to contain at least one functioning component it
can be returned to the supplier for replacement at minimal cost. On the
other hand, if no incoming testing is done and it turns out at the time of
attempted installation that the lot contains no good components, a huge
monetary penalty associated with project delay will be suffered. Even if
the Bernoulli model is appropriate and p is known and large, an optimal
incoming inspection policy will sample until the first good component in
the lot is found. Mathematization of this scenario involves a cost structure
which does not treat each item separately as required by Condition 2 and
produces something other than an all or none optimal rule.

9 Conclusion

Under a cost structure which assesses costs as a total of separately deter-
mined costs for each item of production and when information on the condi-
tion of some parts in a product stream cannot alter one’s assessment of the
likely condition of other parts, the best inspection policy is either to inspect
every item or to let all items pass with no inspection. We have shown this
to be true under several scenarios. Cases we considered are (1) random or
fixed interval inspections, (2) inspection under a continuous sampling plan,
and (3) acceptance sampling of lots. More generally, we have shown that the
optimal fully sequential inspection plan for a stable product stream when
costs are assessed separately and identically for each item is of the all or



none variety, with the choice depending on the joint distribution of product
characteristics and inspection results and the particular cost structure be-
ing used. In all of these arguments, we have allowed for the possibility that
inspection results may not perfectly reflect the states of the inspected parts.

If the appropriate inspection cost structure is not a sum of separately
and identically determined component costs, or if by inspecting some parts
one can obtain an improved assessment of the remaining parts (which is the
situation for nontrivial Bayesian models) then optimal inspection rules need
not be of the all or none type. We have shown that adding the possibility of
inspection errors to the Thyrefod/Lorenzen “single sampling with rectifica-
tion” formulation of this problem leaves it unchanged except for a rescaling
of the prior distribution on the probability of judging a part defective and
a transformation of the cost parameters.
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Appendix A All or None Under CSP-1

Below, we minimize the ratio of mean cycle cost to mean cycle length under
a CSP-1 inspection plan to show that the optimal plan has the all or none
character.

With fixed p and under the imperfect inspection model set out in Section
2, the 100% inspection phase of a CSP-1 cycle has mean length given by

P Ul
(1 — o)
where v = p(1 — wy) + (1 — p)wg is the probability of (rightly or wrongly)

judging an item to be defective. The average cost associated with a 100%
inspection phase is

1—(1-w)
v(1 —v)t

The sampling phase of a CSP-1 cycle has a mean length of Ly = m/v
and mean cost

C1= [k1 + kawip + kswo(l — p) + ka(1 — wy)p].

k k 1 k 1- ka(1 —
ool (L llop) e

v [m m m
The ratio of mean cycle cost to mean cycle length is (with a little algebra)

Ci+Cy

Li+ Ly

k1 + kywip + kswo(1 — p) + ka(1 — wi)p

4 2k 4 kswo — p[(1 — wi)(ka — ka) + woks]}[(m — 1)(1 — v)']
I+ (m—-1)(1-wv)

R

Viewed as a function of = (m — 1)(1 — v)*, this is of the form

Bzx

=A
R(z) +1+$

where A and B are constants. R is minimized over nonnegative z by = 0
if B> 0and by 2 = 0o if B < 0. This corresponds to taking m = 1 (inspect
all) if p > p. and m = oo (inspect none) if p < p..
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Appendix B All or None Under Acceptance Sam-
pling of Lots

Here we show that all or none is optimal when doing acceptance sampling of
lots as described in Section 4. The expected cost associated with inspecting
a lot is

C = nlki + kawip + kzwo(l — p) + ka(1 — wq)p]
+(N —n){(1 = Pa)[k1 + kawip + kswo(1 — p) + ka(1 — wy)p] + Pakap}
= N[k + kawip + kzwo(1 — p) + ka(1 — w1)p]
—Pa(N — n){(k1 + woks) — p[(1 — w1)(k2 — ka) + woks]}

where P, is the probability of accepting the lot under a given rule for lot
disposal. If the factor in braces is positive, (i.e., p < p.) an optimal policy
will have P, = 1 and n = 0; that is, accept the lot with no inspection. On
the other hand if p > p., then an optimal policy will have Py(N — n) = 0;
that is, an optimal policy will examine every item in the lot.

Appendix C All or None and General Sequential
Inspection Plans

Here we use backwards induction to show that under Conditions 1 and 2
an all or none policy is optimal among all possible sequential inspection
policies, for a run of N items, that depend upon possibly noisy inspection
results. Let X; be a possibly vector valued random variable denoting the
physical characteristics of the ¢th unit and let Y; be a possibly vector valued
random variable denoting the inspection results of the {th unit. Condition
1 states that the (Xy,Y;) vectors are jointly iid. Let the inspection policy
be given by the sequence {u;} with u; = 1 indicating that the ¢{th item is
to be inspected and uw; = 0 otherwise. FEach w; is allowed to depend on
inspection outcomes obtained before the {th item is presented for possible
inspection. That is, u; is potentially a function of the previous inspection
choices uq,...,u;_1 and the variables

Zi = u; Yy, 1=1,2,...,1—1.

We seek an inspection policy to minimize the appropriate expected cost

12



criterion which is

N
C=E {Z [urS (X, Yi) + (1 - Ut)A(Xt)]}

t=1
where

S(X,Y) denotes the cost of sampling, inspecting and either rejecting or
accepting for use an item with characteristics X and inspection mea-
surements Y'; and

A(X) denotes the cost of accepting for use with no inspection an item with
characteristics X.

We note that one could also allow A to depend on Y; but this seems unnec-
essary since the measurements Y; are taken only if the item is sampled.
Below we will use the expectations

E[S(X0. Y| Z1,. ... Zis1] = E[S(XnY))]=S

E[AX)|Z1, ..., Z1] = E[A(X))] = A

Let V;* be the optimal cost obtainable from item ¢ to item N. Then

Vi =  min E{unS(Xn,Yn)+ (1 —uy)A(Xn)}
uNE{O,l}

= min{S, A}

Hence, the optimal final period decision is u3, = 1 (inspect item N )if S < A

and u}; = 0 otherwise. Note that u};, and V3, do not depend on previous

inspection decisions wuq,...,un_1 or on the observed history Zq,..., Zny_1.
Now we use induction. Suppose

Vit = (N — ) min{S, A}
Then
Vi = gl{igll}E{UtS(Xth) + (1 —u) A(Xy) + thl—l | Z1,.o o Zsa}
= utren{igh}{utS + (1 —u)A+ (N — t)min{S, A}}

[N —(t— 1) min{S, A}.

13



Hence, the optimal decision in period ¢ is

uy = 1, fS<A
= 0, otherwise.

We see, in general, that «; and V;* do not depend on previous inspection
decisions w1,...,u;—1 or on the observed history Zq,...,Z;_1. Thus, the
optimal (potentially sequential) inspection policy is to inspect all items if
S < A or no items otherwise.

The above argument holds for any fixed run size N and, since the solution
is independent of N, it may be regarded as a solution to the infinite horizon
problem of inspecting a never-ending stream of items.

For the Bernoulli case considered throughout most of the paper we have
that (Xy,Y;) are iid with X; ~ Bernoulli(p) and Y; ~ Bernoulli with

PlY,=1] = wo if X;=0
= 1—’(1]1 lf thl

and we would take the cost functions to be
S(X,Y)=k1+ k2 X(1 =Y )+ ks(1 - X)Y + ks XY

and

In this setup we have
S = ki + kapwy + E3(1 — p)wo + kap(1 — wy)

and

A= kop

and the condition § < A is equivalent to p > p..

Appendix D Bayesian Acceptance Sampling and
Inspection

We here show that including the possibility of inspection errors in the

Bayesian acceptance sampling problem of Lorenzen (1985), can be thought

of in terms of Lorenzen’s framework with a “rescaled” prior distribution and
transformed cost parameters.

14



Lorenzen (1985) considered a perfect inspection model (wg = wy; = 0)
where, for given p, the elements of Xy = (Xi,...,Xy) are independent
identically distributed Bernoulli variates with P[X; = 1] = p and the un-
certainty in p is described using a Beta prior distribution. He considered
three types of inspection costs, each depending on the condition of the part,
namely: cost to sample a part, S(X); cost to reject an unsampled part,
R(X); and cost to accept an unsampled part A(X). For notational simplic-
ity let

S(X) = sp, fX=0
= S1, fX=1

R(X) = ry, i X=0
= T, ifX =1

AX) = ap IfX=0

= a17 lf X = 1
Lorenzen’s total cost function is
n N N
C(Xnin, A) =D S(Xe)+ > R(Xy)+1[X, € A] > (A(Xy) - R(Xy))
t=1 t=n+1 t=n+1

where A C {0,1}" is the acceptance region defining the decision rule. The
problem is to minimize F[C] with respect to both n and A. Thus, it suffices
to consider minimization of the mean of a smoothed cost function with the
same expectation as C':

n N
C1(Xn,p;n, A) = E lz S(Xt) p] +E| > R(X)|p
t=1 t=n+1
N
‘|‘E I[Xn € A] Z (A(Xt) - R(Xt)) Xnvp
t=n+1

= n[so+p(s1 — so)]+ (N —n)[ro + p(r1 — r0)]
+(NV = n)I[X, € A]lag + (p(a1 — ao) — ro — p(r1 — r0)].

We generalize Lorenzen’s version of this problem as follows: X and p
are modeled as above; however, the inspection results Yy = (Y1,...,Yn)

15



(Y; = 1 indicates the t{th item is judged defective) are not necessarily the
same as the states X . Conditional on Xy and p, the elements of Y are
modeled as independent Bernoulli variates with

PlY,=1] = wo if
= 1—w1 if

)(t =0
AXVt =1.

This implies that given p, = (1 — p)wo + p(1 — w1 ), the elements of Y,
are independent Bernoulli(p,) variates. The distribution of p, implied by
the standard Beta prior on p is a Beta distribution scaled to the interval
(wg, 1 — wy). (For convenience we assume wg < 1 — wy.)

Our generalization of Lorenzen’s cost function for the inspection error

problem is
n N
C/(XNvYanvA) = ZS(XH}Q)—}— E R(Xh}/t)
t=1 t=n+1

N
HIY, € Al Y (A(Xy) = R(X, YY)

t=n+1
where

S(X,Y) = sg if X=0Y=0
= S01 if AXIO,Yzl
= S10 if X = 1,YI 0
S11 if X = 1,Y =1
R(X,Y) roo if X=0,Y=0
= To1 if X = O,YI 1
= Ti0 if X:l,Y:O
T11 if X= 1,1/7 =1

AX) = ag, if X=0

Qaq, if X =1.

(' is actually more general than required for the cost structure of Sections
2 and 4 involving k1, k9, k3 and k4. To see that our costs can be written in

Lorenzen’s form, one uses the correspondences

S00 = Too = k’h
sop1 =101 = ki + ks,
sto="T10 = ki + ko,

16



sju =111 = ki + ka,
Qg = O,

o] = k’g.

Consider a smoothed version of C':

n N
Ci(Yn,pyin, A) = E lz S(Xt,Yy) py] +E| Y R(Xy,Y)|py
t=1 t=n+1
N
+E 1Y, € A] Y (A(Xy) = R(X4, V)| py, Yo -
t=n+1

We show below that C7 is of the same form as Cy. Also, apart from the priors
on p and py, (X,,, p) has the same probability structure as (Y,,p,). Hence,
except for rescaling of the prior, and transforming the cost parameters, the
problem with inspection errors is identical to the one with no errors.

To show that C{ has the same form as C we use p, = wo+p(1—wo—wy)
to write

E[S(X,Yy) | py] = [(1—wo)soo + wosor] + p{[(1 — w1)s11 + wis10] — [(1 — wo)sgo + woso1]}

= {(1 —wy)[(1— wo)soo + woso1] — wol(1 — w1)s11 + w1510)
+py {[(1 — wy)s11 + wis10] — [(1 — wo)soo + wosor]}}/(1 — wg — wn),

E[R(X:,Yy) | py] = [(1—wo)roo+ worer] + p{[(1 — wi)riy + wir10] — [(1 — wo)roo + woro1]}

= {(1 —w1)[(1 = wo)roo + wore1] — wol(1 — wy)r11 + wirig]
+py {[(1 = wy)riy + wirie] — [(1 — wo)reo + worer]}}/(1 — wo — wy).

For ¢t > n, we have

E[A(X) | Yy, py] = (1—plag+poy
= [(1 —wi)ao — woar + py(ar — ag)]/(1 — wo — w1)
and
E[R(Xtvyt) | Ynapy] = E[R(Xtvyt) | py]'
Hence,
Cl(Yn,pyin, A) = n{(1— w1)[(1 — wo)soo + woso1] — wol(1 — wy)s11 + wys10]

+py {[(1 = wy)s11 + wisio] — [(1 — wo)soo + wosor]}}/(1 — wo — wy)
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+N{(1 — w1)[(1 = wo)roo + wore1] — wol(1 — wy)r11 + wirig]

+py {[(1 = w1)r11 + wirio] — [(1 = wo)roo + woron]} }/(1 — wo — wy)
+(N —n)I[Y, € A] x {[(1 — wy)ag — woay + py(a1 — a)]

—(1 = w)[(1 — wo)roo + woro1] — wo[(1 — w1)r11 + w1T10)]

+py {[(1 = w1)r11 + wirio] — [(1 = wo)roo + woror]} }/(1 — wo — wy).

This is in the form of C with

so = {(1 —w1)[(1 - wo)so0 + woso1] — wol(1 — wi)s11 + wi1s10]}/(1 — wo — w1)
$1 {(1 = wo)[(1 — w1)s11 + wiS10] — w1[(1 — wo)seo + wose1]}/(1 — wo — w1)
To {(1 = w1)[(1 = wo)roo + woro1] — wol(1 — w1)r11 + wir10]}/(1 — wo — w1)
r {(1 — wo)[(1 — wy)r11 + wirio] — wr[(1 — wo)roo + woro1]}/(1 — wo — w1)
ao [(1 = wy)ag — woar]/(1 — wg — wy)
a; = [(1—wp)ag —wiog]/(1— wo— wr)

Since ) Y is sufficient for p, and the distributions of Y; and }”Y; have
monotone likelihood ratio, then the algorithm of Lorenzen (1985, Section 3)
can be used to find optimal n and c. For the case with no inspection errors
Lorenzen gives a computer program implementation which makes use of
simplifications arising because the Beta family is conjugate for the Bernoulli
model. For the case with inspection errors these simplifications are not
available and implementing the algorithm would be more difficult.
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